Effect of antifungal agents on lipid biosynthesis and membrane integrity in Candida albicans.

نویسندگان

  • N H Georgopapadakou
  • B A Dix
  • S A Smith
  • J Freudenberger
  • P T Funke
چکیده

Eight antifungal agents were examined for effects on lipid biosynthesis and membrane integrity in Candida albicans. Lipids were labeled in vivo or in vitro with [14C]acetate and analyzed by thin-layer and gas chromatography. Membrane integrity was measured by a recently developed [14C]aminoisobutyric acid radiolabel release assay. The imidazole antifungal agents miconazole, econazole, clotrimazole, and ketoconazole, at concentrations inhibiting ergosterol biosynthesis (0.1 microM), decreased the ratio of unsaturated to saturated fatty acids in vivo but not in vitro. Similarly, naftifine, tolnaftate, and the azasterol A25822B, at concentrations inhibiting ergosterol biosynthesis (10, 100, and 1 microM, respectively), decreased the ratio of unsaturated to saturated fatty acids in vivo only. This suggests that the effect on fatty acids observed with ergosterol biosynthesis inhibitors may be secondary to the effect on ergosterol. With imidazoles, oleic acid antagonized inhibition of cell growth but not inhibition of ergosterol. This suggests that, with the C-14 demethylase inhibitors, decreased unsaturated fatty acids, rather than decreased ergosterol, are responsible for growth inhibition. Cerulenin, previously reported to be a potent inhibitor of both fatty acid and ergosterol biosynthesis, was found in the present study to inhibit the former (at 5 microM) but not the latter (up to 100 microM). Of the antifungal agents tested, econazole and miconazole (at 100 microM) produced complete release of [14C]aminoisobutyric acid, which is consistent with membrane damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antifungal Action of Methylene Blue Involves Mitochondrial Dysfunction and Disruption of Redox and Membrane Homeostasis in C. albicans.

Candida albicans is known to cause infections ranging from superficial and systemic in immunocompromised person. In this study, we explored that the antifungal action of Methylene blue (MB) is mediated through mitochondrial dysfunction and disruption of redox and membrane homeostasis against C. albicans. We demonstrated that MB displayed its antifungal potential against C. albicans and two clin...

متن کامل

Comparative Lipidomics in Clinical Isolates of Candida albicans Reveal Crosstalk between Mitochondria, Cell Wall Integrity and Azole Resistance

Prolonged usage of antifungal azoles which target enzymes involved in lipid biosynthesis invariably leads to the development of multi-drug resistance (MDR) in Candida albicans. We had earlier shown that membrane lipids and their fluidity are closely linked to the MDR phenomenon. In one of our recent studies involving comparative lipidomics between azole susceptible (AS) and azole resistant (AR)...

متن کامل

New Benzimidazole-1,2,4-Triazole Hybrid Compounds: Synthesis, Anticandidal Activity and Cytotoxicity Evaluation.

Owing to the growing need for antifungal agents, we synthesized a new series 2-((5-(4-(5-substituted-1H-benzimidazol-2-yl)phenyl)-4-substituted-4H-1,2,4-triazol-3-yl)thio)-1-(substitutedphenyl)ethan-1-one derivatives, which were tested against Candida species. The synthesized compounds were characterized and elucidated by FT-IR, ¹H-NMR, 13C-NMR and HR-MS spectroscopies. The synthesized compound...

متن کامل

Candida albicans Targets a Lipid Raft/Dectin-1 Platform to Enter Human Monocytes and Induce Antigen Specific T Cell Responses

Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-β-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdo...

متن کامل

In Vitro Antifungal Activity of (1)-N-2-Methoxybenzyl-1,10-phenanthrolinium Bromide against Candida albicans and Its Effects on Membrane Integrity

Metal-based drugs, such as 1,10-phenanthroline, have demonstrated anticancer, antifungal and antiplasmodium activities. One of the 1,10-phenanthroline derivatives compounds (1)-N-2-methoxybenzyl-1,10-phenanthrolinium bromide (FEN), which has been demonstrated an inhibitory effect on the growth of Candida spp. This study aimed to explore the in vitro antifungal activity of FEN and its effect on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 31 1  شماره 

صفحات  -

تاریخ انتشار 1987